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ABSTRACT: The occurrence and properties of hail smaller than severe thresholds (diameter , 25 mm) are poorly under-
stood. Prior climatological hail studies have predominantly focused on large or severe hail (diameter at least 25 mm or 1 in.).
Through use of data from the Meteorological Phenomena Identification Near the Ground project, Storm Data, and the
Community Collaborative Rain, Hail and Snow Network the occurrence and characteristics of both severe and sub-severe
hail are explored. Spatial distributions of days with the different classes of hail are developed on an annual and seasonal
basis for the period 2013–20. Annually, there are several hail-day maxima that do not follow the maxima of severe hail:
the peak is broadly centered over Oklahoma (about 28 days yr21). A secondary maximum exists over the Colorado
Front Range (about 26 days yr21), a third extends across northern Indiana from the southern tip of Lake Michigan
(about 24 days yr21 with hail), and a fourth area is centered over the corners of southwest North Carolina, northwest
South Carolina, and the northeast tip of Georgia. Each of these maxima in hail days are driven by sub-severe hail. While
similar patterns of severe hail have been previously documented, this is the first clear documentation of sub-severe hail
patterns since the early 1990s. Analysis of the hail size distribution suggests that to capture the overall hail risk, each of
the datasets provide a complimentary data source.

KEYWORDS: Atmosphere; North America; Hail; Thunderstorms; Climatology; Databases; Sampling;
Statistical techniques; Agriculture; Insurance

1. Introduction

In the United States, hail size is divided into two classes: severe,
meaning a diameter of at least 25 mm (1 in.) and sub-severe,
meaning anything less than 25-mm diameter, but greater than
the 5-mm diameter of graupel (Allen et al. 2020). These two
size classes are used to define whether the event meets severe
criteria. Prior to January 2010, the severe class was defined as
hail with a diameter at least 19 mm (0.75 in.). The overall occur-
rence of hail has been regularly explored in the United States
given its substantive and rising impacts to both property and ag-
riculture; however, how frequently smaller hail sizes occur has
received less attention (Changnon 1999; Sander et al. 2013;
Brown et al. 2015; Tang et al. 2019; Allen et al. 2020). Inferring
the occurrence of hail is challenging owing to the spatial and
temporal inhomogeneities that arise from typical observer-
sourced datasets used to validate severe thunderstorm warnings
(i.e., SPC Storm Data; Kelly et al. 1985; Schaefer et al. 2004;
Doswell et al. 2005; Allen and Tippett 2015; Allen et al. 2017;
Taszarek et al. 2020). The relationship of these data to warning
verification (Blair et al. 2011; Bunkers et al. 2020) means that
size criteria within the dataset are mostly confined to no less
than 19 mm (0.75 in.) for hail and so sizes smaller than 19 mm
are poorly represented. Smaller sizes are occasionally included

if they are associated with severe wind, or a tornado. As
noted by Changnon (1999), this limits the utility of these data
in describing the true hail frequency, or the full distribution
of hail sizes that occur. Only about the last two decades contain
reliable hail data (Allen and Tippett 2015) meaning that prior
to the 1990, these data are rarely used because they lacked the
necessary consistency to ascertain the true frequency of hail of
any size in the United States (Changnon 1999). Instead, prior
studies relied either on station-based observations (Changnon
1977a,b; Changnon and Changnon 1997, 2000; Changnon et al.
2001, 2009), hail pads, or agricultural damage data to infer
these events. While these past datasets for the most part still
exist for assessment of hail occurrence, station-based observa-
tions have only had size information for brief periods and for-
mal observations were terminated in the 1990s. Hail pad
records have generally been inconsistent in their maintenance
or heavily regionalized (e.g., Reges et al. 2016), seriously limit-
ing any climatological utility.

The limitations of StormData have spurred newer approaches
that are more dynamic and widespread to collect precipitation
data including hail. For example, the CoCoRAHS observation
network collects more detailed hail information through either
hail pads or spotter observations and includes each of the small-
est, average, and largest size of hail along with other properties
(Reges et al. 2016). Other high density observation collection
efforts include the Severe Hazards and Analysis and Verifica-
tion Experiment (SHAVE; Ortega et al. 2009; Ortega 2018),
which actively probed areas around strong storms in near–real
time to obtain observations to verify temporal and spatial
scales of hail for the verification of radar derived hail products.
While an effective approach to collate hail events, it was
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limited in coverage, and by the available personnel to make
calls at any given time. Despite these limitations, SHAVEdocu-
mented otherwise unprecedented unknown scales of hail fall
and size on a comparatively large sample of storms. In parallel
there have also been small scale efforts to source high density
measurements in the field, and while they have also contributed
to our understanding of hailstone and hail fall properties, their
records are too sporadic to contribute to the climatological un-
derstanding (Blair et al. 2017; Giammanco et al. 2017).

A more accessible and easily managed approach to collating
hail information has been through the Meteorological Phenomena
Identification Near the Ground (mPING) project that imple-
ments a flexible Application Program Interface on a mobile
phone platform to crowdsource volunteer reports of precipitation
events (Elmore et al. 2014). As a result of these efforts, the
mPING project has garnered an impressively large collection of
hail events in the past 8 years across the continental United
States, ranging from 6.35 mm (0.25 in.) maximum diameter
through sizes in excess of 125 mm (5 in.). By approaching the
problem through this platform, mPING provides valuable insight
into the hail sizes that are not traditionally collected or sought by
existing approaches. Despite these favorable attributes, to date
data from mPING have not been used in a climatological con-
text, and small hail climatology over the United States has not
been explored since 2005 (Changnon et al. 2009).

While a number of studies have explored the individual
datasets that characterize hail occurrence (e.g., Changnon
1999; Doswell et al. 2005; Changnon et al. 2009; Allen and
Tippett 2015; Grieser and Hill 2019), no effort has been made
to explore a more comprehensive picture of hail occurrence
through the synthesis of multiple observational datasets to lever-
age their relative strengths and address their weaknesses. This
limitation to existing approaches has only been emphasized
since the retirement of detailed hail reporting from station ob-
servations (Changnon 1999), leading to an incomplete picture
of hail day occurrence for the full distribution of hail sizes.
Understanding the climatology of all hail is important as
sub-severe hail can lead to significant agricultural damage
(Changnon 1971; Changnon and Changnon 1997), and if accu-
mulated can result in dangerous road conditions and localized
flash flooding (Kumjian et al. 2019; Friedrich et al. 2019). In
some regions and seasons, these smaller hail sizes can be the
primary mode of occurrence (e.g., Miller and Mote 2017), and
can provide important insights into ice processes of strong con-
vective clouds (Van Den Heever and Cotton 2004; Kacan and
Lebo 2019). The analysis of the spatial distribution of all hail sizes
is also essential for the cross-validation of proxy hail climatologies
that are derived through the use of remotely sensed satellite and
radar platforms (e.g., Cintineo et al. 2012; Cecil and Blankenship
2012; Bang and Cecil 2019; Murillo et al. 2021; Wendt and Jirak
2021). For example, using only SPC storm reports to validate
these measurements, it is not clear whether the radar-derived
frequencies indicated from maximum expected size of hail de-
tections (MESH; Murillo et al. 2021; Wendt and Jirak 2021)
were an overestimate of hail frequency, or an overestimate of
hail sizes or perhaps a combination of both. To this end, in this
paper we consider climatological frequency and bulk statistics
of hail as ascertained from the combination of mPING, Storm

Data, and CoCoRaHS and explore the relative strengths and
weaknesses of each dataset. The aim of this work is to produce
a comprehensive climatology of hail in the contiguous Unites
States and, in so doing, recognize unique strengths and weak-
nesses of each data source and the information provided
through their cumulative hail observations.

2. Data and methods

Data used in computing hail days for sub-severe and severe
hail come from two sources: the National Oceanic and
Atmospheric Administration/National Centers for Environmen-
tal Information (NOAA/NCEI) Storm Data publication and
mPING. These two sources differ substantially in that Storm
Data is primarily used for NWS warning and verification pur-
poses. This means that offices actively probe for relevant reports
in areas of suspected severe weather, and reporting in the vicin-
ity of NWS offices involves a higher fraction of NWS Employee
reports (Allen and Tippett 2015). Reports are entered as the
nearest reference object identified by the user or NWS em-
ployee entering the report. In contrast, mPING is a passive col-
lection of voluntarily provided reports provided by mPING
users. Unlike Storm Data, users are also provided a referential
list of hail sizes at quarter inch intervals and associated reference
objects, which may assist in mediating size clustering bias toward
known reference objects (Allen and Tippett 2015; Blair et al.
2017). The period of record for mPING considered here spans
8 years from 1 January 2013 to 31 December 2020; however,
mPING remains operational. All data used in this analysis appear
in the online supplemental content. These data include UTC
time of the observation, latitude, longitude, and hail diameter.

The nature of mPING observations means that they are
automatically located in space and time by GPS and are thus
spatially more accurate than other sources of reports, unless
a user moves a considerable distance from the observation or
waits a long time to send the report; cursory examination
shows no evidence of such. No quality control is performed
to mPING hail observations, outside of truly erroneous sub-
missions, though no systematic biases that would influence
the study results are present to the authors’ knowledge.
Storm Data does not enjoy such precision and while Storm
Data errors have been well documented (e.g., Witt et al.
1998) here we take several steps to address these potential
sources of error on the derived climatology. One area that
cannot be remedied is the serious bias in hail size reports as
sub-severe hail is not generally recorded except in cases
where it may be in association with another type of significant
weather (winds, tornadoes, etc.). In contrast, mPING encour-
ages reports of sub-severe hail and so is the only available
data source for a more general all hail climatology. Both
sources suffer from a spatial bias in that reports are naturally
more numerous in and around population centers and road
networks (Allen and Tippett 2015). Without care, this can
lead to misleading conclusions related to the association of
high frequency hail with high population density.

To illustrate these potential biases in the two datasets and
the distinct difference in the raw frequency of reports, we con-
sider both sub-severe (Figs. 1a,b) and severe (Figs. 2a,b) point
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clouds from StormData andmPING, respectively. In both figures,
areas of higher report density are clearly associated with cities and
metropolitan areas in hail prone regions. Such density variations
are nonphysical artifacts and therefore must be removed to the
extent possible.

One approach to diminishing these population derived arti-
facts is through an analysis procedure that diffuses, filters, or
“spreads out” this dependence over an appropriate area, an
approach that has been used in numerous studies (e.g.,
Brooks et al. 2003; Gensini et al. 2020). Approaches such as
Schaefer et al. (2004) treat this by aggregating (binning)
Storm Data severe hail reports into 28 squares, averaging
across the squares, then normalizing the results to reports per
decade per 34 300 km2 (10 000 n mi2). Hexagonal binning
(Carr et al. 1992) is another way to deal with this effect that
has advantages over rectangular binning and therefore is the
approach used here. Chiefly, hexagons are the most complex
polygon that can be tessellated over a surface and are more
similar to circles than are squares. Thus, hexagons and hexago-
nal binning constitute the most efficient and compact division
of 2D data space. This property helps reduce the edge and
border effects inherent in rectangular binning procedures.

For this work, a grid of 233 23 hexagons is distributed over
the CONUS, providing for 529 center points. From this set,
not all hexagons have hail observations as illustrated in Fig. 3.
We experimented with the maximum number of hexagons and

found that the aforementioned grid provided was the highest
resolution that could be used before population centers began
to clearly influence results. Each hexagon includes an area of
about 32600 km2 (roughly equivalent to a 100 km radius cir-
cle). This area reflects a similar scale to that of Schaefer et al.
(2004), thereby allowing for more direct comparison despite
the different gridding approach.

To calculate the number of days with hail, reports from either
dataset are binned within each hexagon; each day is counted
only once. This step is critical to ensure that if there are many
reports within a hexagon for a given date, that day is counted

FIG. 1. (a) Point cloud showing Storm Data reports of sub-severe
hail spanning the period 1 Jan 2013–31 Dec 2020; each point repre-
sents the location of a single Storm Data report. (b) As in (a), but
showing sub-severe reports from mPING.

FIG. 2. (a) Point cloud showing Storm Data reports of severe
hail, as in Fig. 1a. (b) As in (a), but for mPING reports of severe
hail.

FIG. 3. Points showing the center of hexagonal cells that contain re-
ports from either Storm Data or mPING over the period 1 Jan 2013–
31 Dec 2002.
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only once. Because the period of record covers 8 years, the total
number of days is divided by a factor of 8 to yield the average
number of hail days per year.

To smooth the results from the original hexagonal grid, a local,
quadratic least squares surface is fit to the resulting grid of
counts as an additional smoothing step (LOESS; Cleveland
1979; Cleveland and Devlin 1988). The resulting fit is applied
to a finer grid for plotting purposes, and then used as the basis
for contours of days per year of sub-severe hail, severe hail, or
any hail.

Storm Data timestamps have known inaccuracies and tend
to be biased late (after the event), yet Storm Data report time
errors seldom exceed 1 h (Witt et al. 1998). Provided that
mPING users submit reports during or very shortly after an
event, mPING reports have reduced time errors relative to
Storm Data. Times from both source datasets are used to gen-
erate distributions of event times, in local standard time (LST),
to evaluate the most common time of day for hail events and to
discern whether any difference exists between times by season
or hail size. Occurrence time distributions are then estimated
using kernel density estimates (KDEs) computed at 201 points
each using a Gaussian weighting 12.7 mm wide (0.5 in.) trun-
cated at four standard deviations (Silverman 1998).

Finally, a third data source reflecting the next largest avail-
able dataset was also considered, the Community Collaborative
Rain, Hail and Snow Network (CoCoRaHS; Reges et al. 2016).
As time information from CoCoRaHS is unreliable and diffi-
cult to ascertain, we instead focus on its application for under-
standing hail size distributions. We use CoCoRaHS to help
generate distributions of hail size and estimate the proportions
of sub-severe and severe or larger hail. For this application the
use of both CoCoRaHS and mPING allows for a more compre-
hensive viewpoint of sub-severe hail, as Storm Data does not
provide sufficient data of this type. The resulting distributions
are created through empirical cumulative density functions
(eCDFs).

3. Results

a. Sub-severe and severe hail frequency

Here we compare and contrast both the common and com-
plimentary qualities of Storm Data and mPING for severe and
sub-severe hail days. Unsurprisingly, there is a much larger
fraction of sub-severe reports within mPING, and severe or
greater reports in Storm Data (Figs. 1 and 2), suggesting that
these two datasets are likely complementary by providing in-
sight into different sizes of hail, rather than one being notion-
ally superior to the other. Following gridding and smoothing to
the annual average number of hail days of any size, Fig. 4
shows an estimate of the average total number of days with
any hail across the CONUS as estimated using Storm Data
(red) and mPING (blue). This approach further illustrates the
differences between the two datasets because any hail fre-
quency illustrates regions where hail less than an arbitrary
threshold often occurs. This is particularly evident over the
western United States where larger hail sizes are comparatively
rare (Schaefer et al. 2004; Allen and Tippett 2015). Higher

frequencies are particularly evident outside of the typical Great
Plains severe hail maxima, with higher frequency on and near
the foothills of the Rocky Mountains, over the Midwest and
East. Combining the two datasets, however, provides a com-
plementary picture of the total number of hail days. We expect
that the values in Fig. 4b provide the most accurate representa-
tion of average yearly hail days across the CONUS. These val-
ues are more broadly consistent than long term hail data
records based on station data, though with some differences,
including slightly higher frequencies reflecting the broader spa-
tial sampling (Changnon and Changnon 2000). For example,
Changnon and Changnon (2000) reported a hail day frequency
of ∼21 for Denver, Colorado, and Dodge City, Kansas, with a
gradient through eastern Kansas. However, over regions with
more sparse population, the reliability of observation stations
overshadows this benefit. It is important to note that these
sources are not exclusive or independent: a day that counts as
a sub-severe hail day may also count as a severe hail day and
vice versa. This explains why Fig. 4b is not simply the simple
sum of occurrences within Storm Data and mPING.

Spatially, the overall patterns are similar to Schaefer et al.
(2004); however, we note that study provides contours in
number of reports per 10 years and thus the results are not di-
rectly comparable. The overall frequency of that study also
depicts a maximum number of reports to be nearly 60 yr21 for
hail exceeding 0.75 in. This number is well in excess of the
∼30 yr21 for any hail size shown in Fig. 4b, reflecting the dif-
ference obtained if an approach uses hail days rather than hail
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FIG. 4. (a) Contours of the average number of hail days per year
for hail of any size from Storm Data (red) and mPING (blue).
(b) As in (a), but for combined Storm Data and mPING reports.
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reports (Doswell et al. 2005; Allen and Tippett 2015). For this
reason, in this work any single day that receives n . 1 reports
still counts as a single day within a hexagonal bin.

Sub-dividing these reports into mean sub-severe days per
year only, the differences between the two datasets are fur-
ther emphasized (Figs. 5a,b). Storm Data shows two maxima,
one of 6–7 days yr21 across northwest Kansas and another
near Charlotte, North Carolina. However, this is clearly an
underrepresentation of the true frequency, as mPING shows
what is almost certainly a more accurate depiction of sub-severe
hail days because mPING is not, by design, biased toward
severe hail. The most significant differences are in regions out-
side the traditional “hail belt,” with maxima in the Colorado
Front Range, central Oklahoma, and also an east–west region
encompassing parts of the lower Midwest, as well as Kentucky,
North Carolina, South Carolina, Georgia, and northeast Ala-
bama. Curiously, the frequency of mPING reports also intro-
duce spatial inhomogeneities; for example, Storm Data reports
are more likely across the California seaboard as compared to
those from mPING. In combining the two datasets (Fig. 5b),
these reports show a pattern with clear maxima (24 days) over
central Oklahoma, a northeast–southwest band from southern
Wisconsin into northern Ohio touching the southern tip of Lake
Michigan (18–24 days), a clear separate maximum along the
front range of the Rocky mountains extending into eastern Col-
orado (16 days), and finally a fourth maximum encompassing
eastern Kentucky, the southwest corner of North Carolina, the

northwest corner of South Carolina, northern Alabama, and
northern Mississippi (14–16 days). The maximum in central
Oklahoma is part of a general ridge of high sub-severe hail fre-
quency that extends into the Great Lakes region.

The patterns for severe hail (Figs. 6a,b) are decidedly differ-
ent from sub-severe hail, and while spatially consistent are
higher in frequency than the hail day rate reported using Storm
Data alone (Allen and Tippett 2015), likely reflecting continual
growth in hail reporting frequency. Storm Data shows a maxi-
mum of 20 days at the junction of Nebraska–Kansas–Colorado,
along with a broader region of active severe hail days extending
into western North Carolina. mPING does not record as many
severe weather days, particularly outside of the traditional
region for large hail east of the Rocky Mountains, with a
maximum of only 6 days over central Oklahoma and a ridge
of activity extending into the Great Lakes region, a broad
east–west region over northern Colorado with a weak max
roughly over Denver, Colorado, then a ridge centered
roughly over the Appalachians. Through the merger of both
sources (Fig. 6b), a more complete picture develops again
highlighting their complementary nature. The 20-day maximum
over the Nebraska–Kansas–Colorado intersection expands,
with a clear ridge of frequency extending southeast into western
Oklahoma and the eastern Texas Panhandle. The ridge of
severe hail days remains over the Appalachians but likely
has a true frequency closer to 8–10 days per year. These pat-
terns are reminiscent of prior climatologies of hail day fre-
quency (Doswell et al. 2005; Allen and Tippett 2015);

a) Storm Data and mPING Sub-Severe Hail Days 2013-2020

b) Combined Storm Data and mPING Sub-Severe Hail Days 2013-2020
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however, they also illustrate further regional detail and local
maxima.

It is well established that hail displays a strong seasonal cycle
with regional variation perhaps even more so than tornado fre-
quency (Changnon 1977a,b; Doswell et al. 2005; Changnon
et al. 2009; Allen and Tippett 2015; Taszarek et al. 2020). To
explore these distributions in terms of both sub-severe and se-
vere hail, we explore these characteristics using the seasons as
defined from the National Centers for Environmental Predic-
tion, spring (March, April, May), summer (June, July, August),
fall (September, October, November), and winter (December,
January, February), hereafter MAM, JJA, SON, and DJF,
respectively.

Springtime yields the highest frequency for both sub-severe
and severe hail over the central Plains (Fig. 7). This broadly
consistent with station-based estimates in earlier climatologies
(Changnon et al. 2009). Storm Data in contrast produces only
about three days of sub-severe hail during an average spring
(Fig. 7a), in a rough ellipse extending from northeast Texas
across eastern Oklahoma, into southwestern Missouri includ-
ing the southeast corner of Kansas. Because of Storm Data
constraints and aforementioned properties this undercount is
expected. The mPING average number of spring sub-severe
hail days capture generally the same spatial pattern for the
highest values, but the number of days increase substantially.
Higher frequencies also more broadly extend into the Mid-
west, and minimum contours are more expansive than those
of Storm Data. Merging the two sources (Fig. 7c) the pattern

is driven primarily by mPING observations. This yields a
maximum of ∼13 days of sub-severe hail observations situated
over east central Oklahoma, extending up into the Great
Lakes region then eastward into southern New England.
There is another maximum (6 days) nestled into the Denver
area. For severe hail (Figs. 8c,b), Storm Data days are again
more numerous that mPING observations. Here we see maxi-
mum average number of days (∼9 days) shifted slightly to the
west and south from the sub-severe days, which is instead cen-
tered in southwest Oklahoma. A weak ridge of activity extends
to the north and east, following roughly the same pattern as for
sub-severe hail, but much attenuated. mPING severe hail days
are remarkably similar to Storm Data observations, but with
fewer observations outside of the traditional hail belt of Texas–
Oklahoma–Kansas–Nebraska–Missouri. A nonmeteorological
explanation for this focus may be a function of project famil-
iarity in and around the central Oklahoma area. Finally, merg-
ing the two sources (Fig. 7d) the overall pattern is driven by
the larger data source in Storm Data. The ridge of enhanced
activity clearly delineates the expected “hail alley,” along with
a broad region of higher frequency extending to the Atlantic
coast.

In the summer, sub-severe hail shifts northward with a broad
axis extending from the Rocky Mountains through the Midwest
(Fig. 8a). Higher frequencies also extend into the southeastern
United States, reflecting weakly forced pulse storms during the
summer in this region (Miller and Mote 2017). Storm Data
generally undercounts sub-severe hail days, and the pattern is

a) MAM Storm Data and mPING Sub-Severe Hail Days 2013-2020

c) MAM Combined Storm Data and mPING Sub-Severe Hail Days 2013-2020
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FIG. 7. (a) Contours of spring (March, April, May) average number of sub-severe hail days from Storm Data (red) and mPING (blue).
(b) As in (a), but for the spring average number of severe hail days. (c) Contours spring average number of sub-severe hail days in spring
from both Storm Data and mPING combined. (d) As in (c), but for the spring average number of severe hail days.
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significantly different from spring, while mPING sub-severe
hail days provide a more coherent depiction. The maximum of
8 days is found in the Denver/Ft. Collins, Colorado, area, an
extended area of 6–7 days from eastern Minnesota, through
the Chicago, Illinois, area and then through Pennsylvania.
Again, by merging the two data sources (Fig. 8c), we see a
more complete picture, with a weak maximum remaining in
central Oklahoma, the orographically driven maximum over
the Denver area extending into eastern Colorado is clearly evi-
dent, as is a band of hail activity from eastern Minnesota
through the lower Great Lakes and into New England, and a
separate maximum is found over the southeast. When only
Storm Data severe hail is considered (Fig. 8b), the maximum
frequency is clearly centered over northeastern Colorado and
extends north into western South Dakota, with a broad band
of high frequency across the Midwest into the mid-Atlantic.
Combining the two datasets results in a broader range of
higher frequency severe hail, extending into the northeast
(Fig. 8d).

To better illustrate the seasonal progression of occurrence
Fig. 9 shows the total hail days, regardless of size, across the
seasons from both sources. The average number of winter
days with any hail is as would be expected low given limited
instability (Fig. 9d). A broad maximum during this season is
found over eastern Texas, southeastern Oklahoma, Arkansas,
northern Louisiana, and southern Missouri. This hints at the
maximum in severe weather frequency over the southeast
CONUS. Also, on average at least 1 day of hail occurs along

the West Coast, with 2 days on average in western Washing-
ton. Frequency rapidly increases into the spring months, with
a strong Great Plains signal that extends into the Denver,
Colorado, area. Spring, however, is early in the hail season
for many areas closer to the mountains and through the
Midwest and Northeast. During summer maximum surface
heating along with convection reach their peak. Two very
distinct maxima are identified during the summer for any
hail day: one over the Denver area (likely associated with
topographic forcing, the “Denver cyclone” (Wilczak and
Glendening 1988) and the southwest monsoon), and a sec-
ond maximum over the western North Carolina. The belt of
7–8 days of hail extending from eastern Minnesota around
the Great Lakes through Pennsylvania becomes more dif-
fuse, but is still evident. Fall sees waning frequency and a
lower overall number of days with hail (Fig. 9c). Only 3 days
of hail of any size occur and these days all contain a mix of
sub-severe and severe hail. On average a broad area of two
severe hail days is centered on the Kansas–Nebraska border
(not shown). The main area of hail activity extends from
central Oklahoma into Iowa, then eastern Minnesota, curv-
ing around the Great Lakes into far western Pennsylvania.

Another viewpoint for the seasonal cycle is to consider
monthly snapshots through its progression, from March to
May and July (Fig. 10). In March a broad area of severe hail
overlays the southeastern CONUS, evidence of the southeast-
ern maximum in severe weather frequency. The number of
average severe hail days for May increases, displaying a clear

a) JJA Storm Data and mPING Sub-Severe Hail Days 2013-2020

c) JJA Combined Storm Data and mPING Sub-Severe Hail Days 2013-2020

b) JJA Storm Data and mPING MAM Severe Hail Days 2013-2020

d) JJA Combined Storm Data and mPING Severe Hail Days 2013-2020
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FIG. 8. (a) Contours of the yearly average number of sub-severe hail days in summer from Storm Data (red) and mPING (blue). (b) As
in (a), but for severe hail. (c) Contours of the yearly average number of sub-severe hail days in summer from both Storm Data and mPING
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maximum over western Oklahoma and the eastern Texas
Panhandle. By July, the frequency maximum extends over the
northeast panhandle. As has been shown in prior research,
the area of peak severe weather progresses west and north
fromMarch through July.

b. Hail size distribution

Given the distinct differences in the number of sub-severe
and severe hail reports between the datasets, a broader exam-
ination of the hail size distribution may reveal how these data-
sets capture the distribution of hail sizes from all reported
instances. All reported hail sizes are rounded to the nearest

6.35 mm (0.25 in.), and a kernel density estimate (KDE)
across 201 points using a Gaussian weight 12.7 mm (0.5 in.)
wide truncated at four standard deviations (KDEs; Silverman
1998) of the hail size probability density function estimated.
For completeness, the approach here also considers the hail
size distribution from CoCoRaHS reports in comparison to the
other two datasets. Figure 11 displays the hail size pdfs from all
three sources; the missing small sizes are readily apparent in
Storm Data. This problematic size distribution has been dis-
cussed in prior literature (Allen and Tippett 2015; Allen et al.
2017), with the added influence of clear discontinuities in the
pdf associated with the minimum size threshold (0.75 in.), but
also the common reference objects used (25.4 mm or 1 in., 45 mm
or 1.75-in. golf ball, 70 mm or 2.75-in. baseball). In compari-
son, both CoCoRAHS and mPING show a more continuous
distribution that includes the smaller sizes, reflecting a more
even weighting of frequency toward these categories. Owing
to the challenges of Storm Data for understanding the charac-
teristic hail size pdf, we consider a combined pdf of CoCoRaHS
and mPING size data (Fig. 11). Contrasting the Storm Data
pdf, sizes less than 25.4 mm (1 in.) comprise nearly 95% of all
the 95 009 hail reports (15 169 from CoCoRahs and 79840 from
mPING). This suggests that the use of mPING and CoCoRaHS
data combined is a realistic approach to offset the size biases
inherent in Storm Data, and these datasets now constitute a
record to better explore the occurrence of sub-severe hail
and complement the larger sample size of Storm Data. We
do, however, note that CoCoRaHS data may be biased small, as
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FIG. 10. Contours of the yearly average number days with severe
hail for monthly snapshots to illustrate the seasonal cycle in March
(purple), May (red), and July (blue).
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it allows reporting of much smaller sizes leading to differences
in the eCDF which imply preferred sizes reported within
CoCORaHS that do not appear in mPING. It is also likely
that to some extent mPING data may be biased large because
the hail size is estimated rather than measured, and the maxi-
mum reporting size of 127 mm (5 in.) may influence the overall
pdf.

c. Occurrence times

A final climatological aspect of interest is the relative time
of occurrence (Fig. 12a). Transforming hail occurrence time
of any size across the respective seasons to LST and applying
a KDE (Silverman 1998), allows exploration of how the tem-
poral structure of hail occurrence varies. We note here that
Storm Data occurrence times may on occasion be biased toward
later in the day due to observer bias, especially if the occur-
rence time is estimated, and possibly by errors in recording the
observation time itself, i.e., recording the submission time
rather than the observation time. Even so we expect such errors

FIG. 11. (a) KDE pdfs of hail size for Storm Data (red), mPING
(blue), and CoCoRaHS (purple). (b) KDE pdfs using combined
mPING and CoCoRaHS data.
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FIG. 12. (a) Report/occurrence time in LST of Storm Data and
mPING hail events for spring (blue), summer (red), fall (cyan),
and winter (magenta). (b) Kernel density estimates of report/occur-
rence times for Storm Data and mPING spring severe hail (red)
and sub-severe hail (blue). (c) As in (b), but for summer severe
(red) and sub-severe (blue).
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to be rare enough that they do not affect the overall results of
the larger sample. All seasons show peaks in the late afternoon
with relatively slight variations: spring at 1630 LST, summer at
1615 LST, fall at 1615 LST, and winter at 1600 LST. These
times bracket the peak convective periods that usually follow
daytime heating. Variations away from these peaks and spread-
ing of the times away from these peaks may indicate additional
effects due to synoptic-scale dynamic processes, a signal
highlighted by the higher relative frequencies outside of this
peak in winter.

Seasonally, there are small but discernible differences between
the peak times for sub-severe and severe hail (Fig. 12). Two
characteristics stand out: the sub-severe peak is at 1630 LST
while the severe peak is on average later in the day at 1645 LST,
and the sub-severe peak is more broad than the severe peak is.
This is physically consistent as severe hail comes from more
energetic convection that likely occurs later in the day in response
to greater diabatic heating and the capping inversion’s delay of
convection. Sub-severe hail report times are more spread out,
possibly indicating that while the convection is strong enough to
produce hail, these storms reflect a greater fraction of weakly
forced or pulse storms (Miller and Mote 2017), or time frames
when convection has weaker vertical updrafts, both earlier in the
day and after the nocturnal transition. Differences in the summer
are similar: peak report time for sub-severe hail is 1600 LST while
peak report time for severe hail is 1630 LST. The difference is
more pronounced and likely reflects the contribution of oro-
graphic initiation of thunderstorms earlier in the day, or regions
where air mass thunderstorms are more common but still indi-
cates that the severe reports come later in the day. This also im-
plies that generally speaking sub-severe hail is generated on the
periphery of severe convection or to its exclusion.

4. Discussion

The exploration of datasets here illustrates that one hail data-
set is not superior to another, but rather they approach the
characterization of hail occurrence from alternative perspec-
tives and different purposes. In this way, we suggest that the
data comprising Storm Data and mPING are complimentary in
nature. Through playing to these dataset’s relative strengths, we
are able to capture a more holistic picture of the hail hazard,
similar to the opportunities afforded by station reported records
(Changnon and Changnon 2000). By its very design and imple-
mentation, Storm Data is clearly the better dataset if the goal is
to capture severe hail days. While mPING data expands some-
what on severe hail day numbers, its primary strength is that it
provides a more detailed depiction of smaller, sub-severe hail
sizes that Storm Data is not designed to capture. Storm Data is
clearly the better dataset if the goal is to capture severe hail
days, while mPING data expands on severe hail day numbers,
but also provides a more detailed depiction of smaller sub-
severe hail sizes. There are other advantages and disadvan-
tages to the respective datasets as well. mPING reflects a
true volunteer and passive collection dataset, capturing
whatever observers report. In contrast, Storm Data is biased
because in addition to such voluntary reports, the NWS
Weather Forecast Offices (WFOs) actively search for severe

hail reports (as well as other events) as an approach to verify
severe weather warnings (Blair et al. 2011; Bunkers et al. 2020).
This can lead to an under-sampling bias, or a bias toward the
larger hail size as the NWS does not continue probing once a
warning has been verified (Ortega et al. 2009). Similar to Allen
and Tippett (2015), by approaching hail days rather than reports
or individual hail events the results presented here are largely
unaffected by this characteristic. Curiously, despite relatively
widespread coverage mPING severe hail data appears to be a
subsample of Storm Data. It is true that Storm Data may record
sub-severe hail events, but usually this is as an adjunct to some
other significant weather event, and since the change of severe
criteria in 2010 to 25.4 mm (1 in.), these reports have decreased
in frequency (Allen and Tippett 2015). Despite the differences
in the total frequency of reports, it is clear that both sources
tend to capture similar patterns.

While hail, even severe hail, has a relatively common rate of
occurrence across the United States it is not commonly observed
because of its temporal and spatial heterogeneity and the need
to have an observer present (Allen and Tippett 2015). There is
no reason to suspect that mPING observers are censoring obser-
vations of severe hail, especially since both mPING and Storm
Data tend to capture similar spatial patterns, though mPING
captures fewer days of severe hail. The likely explanation for
this disparity is that the density of mPING observers is not as
widespread or as high as the potential sources of reports for
Storm Data, both volunteer and solicited. Despite Storm Data
not aiming to collect sub-severe hail, there are also pattern simi-
larities that raise an important question about the sub-severe
hail days. As mPING is passive, we note that it tends to miss
severe hail events by a factor of 3–5 in comparison to Storm
Data. This leads the authors to speculate: is mPING missing
the non-severe hail events by the same ratio? If so, the count
of sub-severe hail days may be too low by a factor of at least 3.
Also, within mPING non-severe hail often (but not always) ac-
companies severe hail observations, though there are clearly
days and places when no severe hail is reported but sub-severe
hail is. In all likelihood, it is likely that the spatial distribution
here underrepresents the frequency of sub-severe hail days,
yet the overall pattern of sub-severe hail occurrence is likely
well captured. Through analysis and comparison of the sub-severe
and severe hail distributions to date using these data, we illus-
trate that sub-severe hail does not always mimic severe hail.

While spatial properties retain some limitations from the
sampling, we can ascribe greater confidence for the hail size
eCDFs and analysis of hail report times. Both of these metrics
are less sensitive to the heterogeneity that can create prob-
lems with finding the days with hail. Hail size pdfs indicate
that slightly less than 5% of the hail that has been observed
over the 8 years covered by mPING here meets severe crite-
ria. The remaining record is sub-severe, suggesting that
greater attention needs to be paid to exploring how to repre-
sent hail days beyond arbitrary severe hail criteria (Doswell
2001), as sub-severe hail can still be damaging to agriculture
or lead to large accumulations (Kumjian et al. 2019; Friedrich
et al. 2019) that can cause dangerous road conditions and exac-
erbate flash floods. The diurnal nature of hail reports unsur-
prisingly leads to an afternoon peak, though clearly if the goal
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is to sample sub-severe hail, a broader period of observation is
necessary.

5. Conclusions

Data from three sources (Storm Data, CoCoRaHS, and
mPING) over the past 8 years have been used to construct a
more complete climatology of hail days and characteristics
over the CONUS. Differences between these data sources
have been discussed to illustrate their relative strengths and
applicability, both in combination and individually. Seasonal
differences in number of hail days and their spatial distribu-
tions have been illustrated, with a spring and summer peak of
frequency with a shift of peak from the southeastern CONUS
into the northwestern plains, more so than seen in only severe
hail data. Considering sub-severe hail days (days with hail less
than 25.4 mm in diameter) and severe hail days, we have
shown that there are notable differences in the peaks of hail
climatology. Severe hail days also generally record sub-severe
hail somewhere, suggesting that the two datasets are not inde-
pendent. Yet, the spatial distribution of sub-severe hail days
differs markedly in some cases from severe hail days.

Considering the reasons for these different depictions, we
also explore the size distribution of observed hail through the
use of CoCoRaHS, mPING, and Storm Data reports. As
mPING and CoCoRaHS offer more distributionally complete
representations of hail size, we present a combined eCDF that
illustrates the utility of these data to explore the relationship
of hail size at the ground to remotely sensed characteristics.

For environmental studies, or other approaches that rely on
the time of occurrence we highlighted the distribution of hail
in terms of LST. This analysis reveals differences between
sub-severe and severe hail occurrence of 30 min to 1 h, which
is much larger than that between seasons, suggesting that care
should be taken when selecting a proximal profile if consider-
ing sub-severe hail environments.

While this work follows on from the depiction of hail occur-
rence from prior studies (e.g., Kelly et al. 1985; Schaefer et al.
2004; Doswell et al. 2005; Allen and Tippett 2015; Taszarek
et al. 2020), it provides a novel insight into the voluntarily
sourced small, or sub-severe hail, which has not been directly
examined with size information in prior work outside of iso-
lated field datasets. This difference also means that through
the use of datasets such as mPING or CoCoRaHS a more
comprehensive depiction of hail size distributions is now
available to the community. As these datasets continue to
grow, this will likely provide a more comprehensive viewpoint
of hail occurrence for all sizes offering better opportunities
for the validation of radar hail detection, similar to the satura-
tion seen in equivalent approaches in Switzerland (Barras
et al. 2019).

Despite the advantages, and combination of datasets, the
challenges and limitations with observational data remain.
Both mPING and CoCoRaHS suffer from the same problems
that afflict all other similar observational studies: the uneven
spatial distribution of observations. Changnon (1999) pointed
to the advantage of fixed station observers for deriving hail
frequency, which is that, generally speaking, these stations

reliably identified any hail occurrence in their vicinity. To
some extent, this is somewhat less of a problem within Storm
Data, particularly in more populated areas of the country,
since if no report is received in an area warned for a severe
thunderstorm, the NWS WFOs actively probe for verifying
observations. The challenge to uncovering a true climatology
is that uneven spatial observation distribution cannot be
solved by a longer period of record if observations are nor-
malized by area or days as is done here and in other similar
studies. The only solution for this problem is to have more obser-
vations across a wider array of locations and users. The impacts
of spatial inhomogeneity are most easily seen in the difference
between the spatial distribution of Storm Data severe hail days
as compared to mPING severe hail days. Usually, Storm Data
has at least 3 times the number of severe hail days that
mPING reports, sometimes more. This difference implies that
as diligent as mPING observers are, small hail is probably
missed at about the same rate that large hail is missed. Thus,
we suspect that there are overall probably 3 times as many
sub-severe hail days as seen here. While the spatial patterns of
sub-severe hail days are likely correct, the frequency remains
underestimated.

To offset these limitations remotely sensed climatologies of
estimated hail occurrence are now possible (e.g., Cintineo
et al. 2012; Murillo et al. 2021; Wendt and Jirak 2021). These
technologies are available over a near complete spatiotempo-
ral range for the continent outside of the western CONUS.
However, these approaches focus strongly on the maximum
expected size of hail, and through lack of appropriate valida-
tion data, generally leave sub-severe hail as an afterthought,
despite its societal implications. Despite the efforts of projects
such as SHAVE (Ortega et al. 2009; Ortega 2018), or those in
Switzerland (Barras et al. 2019) a greater volume of sub-severe
hail reports is needed to understand the best approach to char-
acterize the total frequency of hail days, the properties of
smaller hailstones, and sub-severe hail economic impacts. The
question of whether small hail occurrence has changed over
time is also a reason to maintain and expand such datasets.
For example, over both China and France there have been
decreasing trends in smaller hail (Li et al. 2016; Sanchez et al.
2017), contrasting the stationary frequency or increases seen
for larger hail in the United States (Allen et al. 2015; Tang
et al. 2019). With climate projections indicating strong de-
creases to smaller hail, approaches are needed to monitor these
events (Mahoney et al. 2012; Brimelow et al. 2017; Trapp et al.
2019). For mPING and CoCoRAHS to develop into this level
of climatological resource likely means that the best approach
into the future will be recruitment of additional observers as
well as dedicated support. As the observer density increases,
fewer events will “slip between the gaps.”
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Data availability statement. Observational hail reports from
the mPING data are available through an API request at
https://mping.ou.edu/, with instructions provided for the struc-
turing of requests. Storm Data reports for hail for the period
can be freely obtained from the Storm Prediction Center
https://www.spc.noaa.gov/wcm/. CoCoRaHS data are avail-
able from the project website and use of a web-API request
https://www.cocorahs.org/ViewData/ListHailReports.aspx.
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